ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I»

(ФГБОУ ВО ПГУПС)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины

«ПРИКЛАДНАЯ МЕХАНИКА» (Б1.О.21)

для специальности 23.05.04 «Эксплуатация железных дорог»

по специализациям

«Магистральный транспорт» «Пассажирский комплекс железнодорожного транспорта» «Грузовая и коммерческая работа» «Транспортный бизнес и логистика»

1. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы

Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы приведены в п.2 рабочей программы.

2. Задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций в процессе освоения основной профессиональной образовательной программы

Перечень материалов, необходимых для оценки индикатора достижения компетенций, приведен в таблицах 2.1 и 2.2.

Таблица2.1. Для очной формы обучения (все специализации)

Индикаторы достижения	Результаты обучения по дисциплине (модулю)			
компетенций				
ОПК-4. Способен выполнять проектирование и расчет транспортных объектов в соот-				
ветствии с требова	аниями нормативных документов			
ОПК-4.1	Обучающийся знает:			
Знает требова-	- основные гипотезы и допущения, принятые в расчетах элементов			
ния норматив-	конструкций на прочность,			
ных документов	– закон Гука для упругой среды,			
для выполнения	 принцип Сен-Венана и принцип независимости действия сил, 			
проектирования	 основные характеристики прочности и пластичности материалов, 			
и расчета транс-	 классические теории прочности и пластичности, 			
портных объек-	 метод плоских сечений для определения внутренних усилий в эле- 			
ТОВ	ментах конструкций,			
	– основные экспериментальные методы механики деформируемог			
	твердого тела.			
ОПК-4.2	Обучающийся умеет:			
Умеет выпол-	 – определять реакции связей, 			
нять необходи-	 условия равновесия плоской и пространственной систем сил; 			
мые расчеты по	– применять метод сечений при расчете на прочность элементов			
проектированию				
транспортных	кручение, косой изгиб, внецентренное растяжение-сжатие;			
объектов, в со-	 применять типовые методы анализа напряженного и деформиро- 			
ответствии с	ванного состояния элементов конструкций при простейших видах			
нормативными	нагружения и в расчетах на устойчивость конструкций.			
документами				

Таблица2. 2. Для заочной формы обучения (все специализации)

Индикаторы	
достижения компетенций	Результаты обучения по дисциплине (модулю)

Индикаторы достижения компетенций	Результаты обучения по дисциплине (модулю)				
	ОПК-4 . Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов				
ОПК-4.1 Знает требования нормативных документов для выполнения проектирования и расчета транспортных объектов	Обучающийся знает: - основные гипотезы и допущения, принятые в расчетах элементов конструкций на прочность, - закон Гука для упругой среды, - принцип Сен-Венана и принцип независимости действия сил, - основные характеристики прочности и пластичности материалов, - классические теории прочности и пластичности, - метод плоских сечений для определения внутренних усилий в элементах конструкций,				
	 основные экспериментальные методы механики деформируемого твердого тела. 				
ОПК-4.2 Умеет выполнять необходимые расчеты по проектированию транспортных объектов, в соответствии с нормативными документами	Обучающийся умеет: — определять реакции связей, — условия равновесия плоской и пространственной систем сил; — применять метод сечений при расчете на прочность элементов конструкций, работающих на растяжение-сжатие, сдвиг, изгиб, кручение, косой изгиб, внецентренное растяжение-сжатие; — применять типовые методы анализа напряженного и деформированного состояния элементов конструкций при простейших видах нагружения и в расчетах на устойчивость конструкций.				

Материалы для текущего контроля

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания:

Перечень и содержание расчетно-графических работ (очная форма обучения)

Расчетно-графическая работа № 1

3адача 1 — Напряжения и перемещения в растянутых (сжатых) стержнях (вариант с распределенной нагрузкой).

Для заданного стержня: а) найти функцию, определяющую изменение величины продольной силы по длине стержня, и построить эпюру этой силы; б) построить эпюру изменения напряжения по длине стержня; в) найти перемещение указанного сечения и определить полное изменение длины стержня.

3адача 2 — Напряжения и перемещения в растянутых (сжатых) стержнях (вариант с объемным весом).

Для заданного стержня: а) найти функцию, определяющую изменение величины продольной силы по длине стержня, и построить эпюру этой силы; б) построить эпюру изменения напряжения по длине стержня; в) найти перемещение указанного сечения и определить полное изменение длины стержня.

Задача 3 — Подбор сечений, деформации и перемещения в статически определимых шарнирно-стержневых системах.

Для заданных стержневых систем требуется: а) пользуясь условием прочности, подобрать размеры поперечных сечений стальных стержней, входящих в состав конструкций; б) определить удлинения (укорочения) стержней.

Расчетно-графическая работа № 2

Задача 1 – Подбор сечения и определение деформаций вала.

В соответствии с заданной схемой нагружения требуется: а) найти m_0 ; Б) построить эпюру крутящих моментов; в) подобрать диаметр сплошного вала, используя условия прочности и жесткости; г) подобрать диаметр полого вала по условиям прочности и жесткости; д) вычислить величину экономии материала для полого вала; е) построить эпюру углов закручивания.

Задача 2 – Подбор сечения балок (вариант балки на двух опорах).

Для заданной балки: а) построить эпюры поперечной силы и изгибающего момента; б) подобрать размеры поперечных сечений.

Задача 3 – Подбор сечения балок (вариант балки с заделкой).

Для заданной балки: а) построить эпюры поперечной силы и изгибающего момента; б) подобрать размеры поперечных сечений.

Расчетно-графическая работа № 3

Задача 1 – Внецентренное растяжение и сжатие стержней.

Для заданной схемы нагружения: а) определить величину допускаемой нагрузки; б) найти и показать положение нейтральной оси; в) построить эпюру нормальных напряжений.

Задача 2 – Определение несущей способности сжатого стержня.

Для заданной схемы сжатого стержня и поперечного сечения определить: а) величину критической силы; б) допускаемой нагрузки; в) коэффициент запаса устойчивости.

В электронной информационно-образовательной среде ПГУПС (sdo.pgups.ru) размещены примеры решения задач, входящих в расчетно-графические работы.

Тесты по дисциплине (очная форма обучения)

(вопрос с одиночным выбором, даны варианты ответа, в задании - 12 вопросов)

ТЕСТОВОЕ ЗАДАНИЕ №1

- 1. В чем измеряются поперечные деформации?
- 1) они безразмерные; 2) в метрах; 3) в Паскалях.
- 2. Тензор напряжений для линейного напряженного состояния (одноосная деформация):

1)
$$T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_{y} & 0 \\ 0 & 0 & 0 \end{pmatrix};$$
 2) $T_{\sigma} = \begin{pmatrix} 0 & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & 0 & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & 0 \end{pmatrix};$ 3) $T_{\sigma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_{z} \end{pmatrix}.$

4

3. Статические моменты плоского сечения:

1) $I_x = W_x y_{\text{max}}$, $I_y = W_y x_{\text{max}}$; 2) $S_x = y_c A$, $S_y = x_c A$; 3) $W_x = \frac{I_x}{y_{\text{max}}}$, $W_y = \frac{I_y}{x_{\text{max}}}$.

4. При поперечном изгибе в сечениях балки возникают:

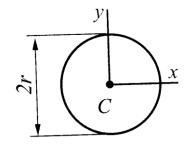
- 1) только изгибающие моменты M ; 2) только поперечные силы Q ;
- 3) изгибающие моменты и поперечные силы.
- 5. Формула Журавского:

1) $I_{x1} = I_x + a^2 A$; 2) $\tau = \frac{Q \cdot S_x^{\text{OTC}}}{I_x b_y}$; 3) $\tau = \frac{M_K}{I_p} \rho$.

6. Статические моменты S_{x} , S_{y} равны нулю относительно:

1) главных осей инерции; 2) центральных осей инерции; 3) декартовых осей координат.

7. При кручении круглого стержня касательные напряжения максимальны:


1) на контуре сечения; 2) в центре тяжести сечения; 3) во всех точках сечения одинаковы.

8. Напряжения и внутренние усилия при сдвиге связаны соотношением:

1)
$$\sigma = N/A$$
; 2) $\tau = G\gamma$; 3) $\tau = O/A$.

9. Полярный момент инерции I_p изображенного сечения:

1)
$$I_p = 0$$
; 2) $I_x = \frac{\pi r^4}{4}$; 3) $I_p = \frac{\pi r^4}{2}$.

10. Удлинение участка стержня при растяжении:

1)
$$\varepsilon = \frac{\Delta l}{l}$$
; 2) $\varepsilon' = -v\varepsilon$; 3) $\Delta l = \frac{Nl}{EA}$.

11. В чем измеряются касательные напряжения?

- 1) они безразмерные; 2) в Ньютонах; 3) в Паскалях.
- 12. Нормальные напряжения при изгибе:

1)
$$\sigma = \frac{E}{\rho} y$$
; 2) $\sigma = \frac{M}{I_x} y$; 3) $\tau = \frac{M_K}{I_p} \rho$.

ТЕСТОВОЕ ЗАДАНИЕ №2

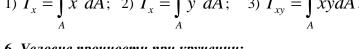
1. Какие силы из нижеперечисленных являются объемными:

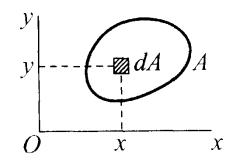
- 1) собственный вес; 2) линейно распределенная нагрузка; 3) сосредоточенные силы.
- 2. Условие статической эквивалентности при растяжении-сжатии:

1)
$$N = \int_A \sigma_z dA$$
; 2) $Q_x = \int_A \tau_{zx} dA$; 3) $Q_y = \int_A \tau_{zy} dA$.

3. Третья теория прочности:

1)
$$\sigma_p = \sigma_1 \le [\sigma]$$
; 2) $\sigma_p = \sigma_1 - \nu(\sigma_2 + \sigma_3) \le [\sigma]$;


3)
$$\sigma_p = \sigma_1 - \sigma_3 \le [\sigma]$$
; 4) $\sigma_p = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_3 \sigma_1} \le [\sigma]$.


5

4. Одну реакцию имеет опора:

- 1) шарнирно-подвижная; 2) шарнирно-неподвижная; 3) заделка.
- 5. Центробежный момент инерции:

1)
$$I_x = \int_A x^2 dA$$
; 2) $I_x = \int_A y^2 dA$; 3) $I_{xy} = \int_A xy dA$.

6. Условие прочности при кручении:

1)
$$\sigma = N/A \leq [\sigma];$$
 2) $\tau_{\kappa,\text{max}} = M_{\kappa}^{\text{max}}/W_p \leq [\tau];$

3)
$$\tau = Q/A \leq [\tau]$$
.

7. Эпюра нормальных напряжений при изгибе:

- 1) постоянна; 2) линейна; 3) ограничена параболой.
- 8. Дифференциальное уравнение упругой линии балки:

1)
$$\frac{1}{\rho} = \frac{M}{EI_x}$$
; 2) $\frac{1}{\rho} = \pm \frac{v''}{\sqrt{(1+v'^2)^3}}$; 3) $v'' = \frac{M}{EI_x}$.

9. Нормальные напряжения при внецентренном растяжении/сжатии:

1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

10. Закон Гука при сдвиге:

1)
$$\sigma = E\varepsilon$$
; 2) $\tau = Q/A$; 3) $\tau = G\gamma$.

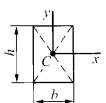
11. Эпюра Q имеет скачок в сечении, в котором действует:

1) сосредоточенная сила; 2) изгибающий момент; 3) распределенная нагрузка.

12. При чистом изгибе в поперечных сечениях действуют:

- 1) только нормальные напряжения σ ; 2) только касательные напряжения τ ;
- 3) нормальные и касательные напряжения (σ и τ).

ТЕСТОВОЕ ЗАДАНИЕ №3


1. При растяжении стержня нормальные напряжения максимальны:

1) на контуре сечения; 2) в центре тяжести сечения; 3) во всех точках сечения одинаковы.

6

2. Центробежный момент инерции $I_{\chi_{V}}$ изображенного сечения:

1)
$$I_{xy} = \frac{hb^3}{12}$$
; 2) $I_{xy} = \frac{bh^3}{12}$; 3) $I_{xy} = 0$.

3. Распределенная нагрузка и изгибающий момент связаны зависимостью:

1)
$$q_z = -\frac{d^2M}{dz^2}$$
; 2) $Q = \frac{dM}{dz}$; 3) $q_z = -\frac{dQ}{dz}$.

4. В каких пределах изменяется коэффициент. Пуассона?

1)
$$-0.5 \le \nu \le 0$$
; 2) $0 \le \nu \le 1$; 3) $0 \le \nu \le 0.5$.

2)
$$0 \le \nu \le 1$$
:

3)
$$0 \le v \le 0.5$$

5. Полный угол закручивания:

1)
$$\varphi = \frac{M_{K}}{GI_{p}};$$
 2) $\varphi = \frac{M_{K}l}{GI_{p}};$ 3) $\varphi_{pag} = \frac{\pi\varphi_{rp}}{180}.$

6. Нормальные напряжения при внецентренном растяжении/сжатии:

1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

7. Осевой момент инерции I_{ν} изображенного сече-

1)
$$I_y = \frac{hb^3}{12}$$
; 2) $I_y = \frac{hb^3}{3}$; 3) $I_y = \frac{hb^3}{2}$.

8. Условие статической эквивалентности при кручении:

1)
$$M_x = \int_A \sigma_z y \ dA$$
; 2) $M_y = \int_A \sigma_z x \ dA$; 3) $M_z = \int_A (\tau_{zy} x - \tau_{zx} y) \ dA$.

9. При растяжении стержня возникает:

1) продольная сила N; 2) поперечная сила Q; 3) изгибающий момент M_r .

10. Потенциальная энергия деформации при растяжении:

1)
$$U = \frac{N^2 l}{2EA}$$
; 2) $U = \frac{Q^2 a}{2GA}$; 3) $U = \frac{M_{\kappa}^2 l}{2GI_{max}}$

11. При чистом изгибе в поперечных сечениях балки возникают:

1) только изгибающие моменты; 2) только поперечные силы; 3) изгибающие моменты и поперечные силы.

12. Четвертая теория прочности:

1)
$$\sigma_p = \sigma_1 \leq [\sigma]$$
; 2) $\sigma_p = \sigma_1 - \nu(\sigma_2 + \sigma_3) \leq [\sigma]$;

3)
$$\sigma_p = \sigma_1 - \sigma_3 \le [\sigma]$$
; 4) $\sigma_p = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_3 \sigma_1} \le [\sigma]$.

ТЕСТОВОЕ ЗАДАНИЕ №4

1. Нормальные напряжения при косом изгибе:

1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

2. Жесткость поперечного сечения при растяжении:

1)
$$EA$$
; 2) GA ; 3) GI_n .

3. Связь напряжений и внутренних усилий при кручении:

1)
$$\sigma = N/A$$
; 2) $\tau = G\rho\varphi$; 3) $\tau = \frac{M_{\kappa}}{I_{p}}\rho$.

4. Полное напряжение на площадке с нормалью *n* :

1)
$$\sigma = \frac{E}{Q}y$$
;

2)
$$\sigma = N/A$$

1)
$$\sigma = \frac{E}{g} y$$
; 2) $\sigma = N/A$; 3) $p_n = \sqrt{\sigma_n^2 + \tau_n^2}$.

5. В чем измеряются нормальные напряжения?

- 1) в ньютонах;
- 2) в Паскалях;
- 3) они безразмерные.

6. Распределенная нагрузка и поперечная сила связаны формулой:

1)
$$q_z = -\frac{d^2M}{dz^2}$$
; 2) $Q = \frac{dM}{dz}$; 3) $q_z = -\frac{dQ}{dz}$.

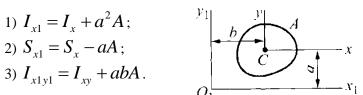
$$2) Q = \frac{dM}{dz}$$

$$3) q_z = -\frac{dQ}{dz}$$

7. Касательные напряжения при плоском поперечном изгибе:

1)
$$\sigma = \frac{E}{\rho} y$$

1)
$$\sigma = \frac{E}{\rho} y$$
; 2) $\tau = \frac{Q \cdot S_x^{\text{OTC}}}{I_x b_y}$; 3) $\tau = \frac{Q}{A}$.


3)
$$\tau = \frac{Q}{A}$$
.

8. Осевой момент инерции при параллельном переносе оси х:

1)
$$I_{x1} = I_x + a^2 A$$
;

2)
$$S_{x1} = S_x - aA$$

3)
$$I_{x1y1} = I_{xy} + abA$$

9. Эпюра касательных напряжений при изгибе:

- 1) постоянна; 2) линейна; 3) ограничена параболой.
- 10. Максимальные нормальные напряжения при изгибе:

1)
$$\tau_{\text{K,max}} = \frac{M_{\text{K}}^{\text{max}}}{W_{n}}$$

1)
$$\tau_{\text{K,max}} = \frac{M_{\text{K}}^{\text{max}}}{W_p}$$
; 2) $\sigma_{\text{max}} = \frac{N_{\text{max}}}{A_{\text{Herto}}}$; 3) $\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_x}$.

3)
$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_{x}}$$

11. Тензор напряжений для объемного напряженного состояния (трехосная деформация):

1)
$$T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_{y} & 0 \\ 0 & 0 & 0 \end{pmatrix};$$
 2) $T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{pmatrix};$ 3) $T_{\sigma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \tau_{yz} \\ 0 & \tau_{zy} & \sigma_{z} \end{pmatrix}$

3)
$$T_{\sigma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \tau_{yz} \\ 0 & \tau_{zy} & \sigma_z \end{pmatrix}$$

12. Если N < 0, то участок стержня:

- 1) растянут; 2) сжат;
- 3) недеформирован.

ТЕСТОВОЕ ЗАДАНИЕ №5

1. Ориентация главной площадки при сдвиге:

- 1) $\alpha = 90^{\circ}$; 2) $\alpha = 0^{\circ}$; 3) $\alpha = 45^{\circ}$.

2. Условие статической эквивалентности при плоском поперечном изгибе:

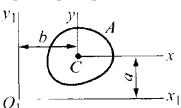
1)
$$M_z = \int (\tau_{zy} x - \tau_{zx} y) dA$$
; 2) $Q_y = \int \tau_{zy} dA$; 3) $M_x = \int \sigma_z y dA$.

$$2) Q_y = \int \tau_{zy} dA$$

8

3)
$$M_x = \int_{A} \sigma_z y \ dA$$

3. Нормальные напряжения при внецентренном растяжении/сжатии:


1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

4. Центробежный момент инерции при параллельном переносе оси х:

1)
$$I_{x1y1} = I_{xy} + abA$$
;

1)
$$I_{x1y1} - I_{xy} + abA$$
;
2) $I_{y1} = I_y + b^2A$;
3) $I_{x1} = I_x + a^2A$.

3)
$$I_{x1} = I_x + a^2 A$$

5. Потенциальная энергия деформации при сдвиге:

1)
$$U = \frac{M_{K}^{2}l}{2GI_{p}};$$
 2) $U = \frac{N^{2}l}{2EA};$ 3) $U = \frac{Q^{2}a}{2GA}.$

$$2) U = \frac{N^2 l}{2EA};$$

$$3) U = \frac{Q^2 a}{2GA}.$$

6. Для плоского напряженного состояния:

1)
$$\sigma_1 = \sigma_2 = \sigma_3 = 0$$

2)
$$\sigma_2 = \sigma_3 = 0, \ \sigma_1 \neq 0$$

1)
$$\sigma_1 = \sigma_2 = \sigma_3 = 0$$
; 2) $\sigma_2 = \sigma_3 = 0$, $\sigma_1 \neq 0$; 3) $\sigma_2 = 0$, $\sigma_1 \neq 0$, $\sigma_3 \neq 0$.

7. Продольная деформация при растяжении:

1)
$$\varepsilon' = -\nu \varepsilon$$
:

2)
$$\varepsilon = \Delta l / l$$
:

3)
$$\sigma = N/A$$
.

8. Условие прочности при плоском поперечном изгибе:

1)
$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_r} \leq [\sigma]$$

2)
$$\sigma_{\text{max}} = \frac{N_{\text{max}}}{A_{\text{Herro}}} \le [\sigma]$$

1)
$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_{\chi}} \le [\sigma];$$
 2) $\sigma_{\text{max}} = \frac{N_{\text{max}}}{A_{\text{HeTTO}}} \le [\sigma];$ 3) $\tau_{\text{K,max}} = \frac{M_{\text{K}}^{\text{max}}}{W_{p}} \le [\tau].$

9. Дифференциальное уравнение упругой линии при наличии распределенной нагрузки:

1) второго порядка; 2) третьего порядка; 3) четвертого порядка.

10. Полярный момент инерции сечения

1)
$$I_p = \int_A^{\infty} \rho^2 dA$$
; 2) $\tau = G\rho \varphi$; 3) $W_p = I_p / r$.

$$2) \ \tau = G\rho\varphi \ ;$$

3)
$$W_p = I_p / r$$

11. Максимальные касательные напряжения при изгибе возникают:

1) в центре поперечного сечения; 2) на внешних волокнах; 3) во внутренних волокнах.

12. Критическое напряжение по Эйлеру:

1)
$$\sigma = \frac{N_{\text{max}}}{\Delta}$$
;

$$2) \sigma = \frac{\pi^2 E}{r^2}$$

1)
$$\sigma = \frac{N_{\text{max}}}{A}$$
; 2) $\sigma = \frac{\pi^2 E}{\lambda^2}$; 3) $\sigma = \frac{M_{\text{max}}}{W_x}$.

ТЕСТОВОЕ ЗАДАНИЕ №6

1. Размерность объемной силы:

1) κH ; 2) $\kappa H/m^3$; 3) $\kappa \Gamma$; 4) $\kappa \Gamma/m^3$.

2. Условие статической эквивалентности при растяжении-сжатии:

1)
$$N = \int \sigma_z dA$$
;

$$Q_x = \int \tau_{zx} dA$$

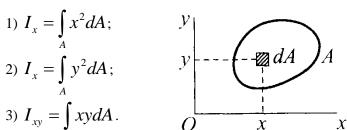
1)
$$N = \int_A \sigma_z dA$$
; 2) $Q_x = \int_A \tau_{zx} dA$; 3) $Q_y = \int_A \tau_{zy} dA$.

9

3. Третья теория прочности:

1) $\sigma_n = \sigma_1 \le [\sigma]$; 2) $\sigma_n = \sigma_1 - \nu(\sigma_2 + \sigma_3) \le [\sigma]$;

3)
$$\sigma_p = \sigma_1 - \sigma_3 \le [\sigma]$$
; 4) $\sigma_p = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_3 \sigma_1} \le [\sigma]$.


4. Одну реакцию имеет опора:

- 1) шарнирно-подвижная; 2) шарнирно-неподвижная; 3) заделка.
- 5. Центробежный момент инерции:

 $I_{x} = \int_{A} x^{2} dA;$

$$I_x = \int_{-\infty}^{A} y^2 dA;$$

3)
$$I_{xy} = \int_A xy dA$$
.

6. Условие прочности при кручении:

1)
$$\sigma = N/A \leq [\sigma]$$
;

1)
$$\sigma = N/A \le [\sigma];$$
 2) $\tau_{\kappa, \max} = M_{\kappa}^{\max}/W_p \le [\tau];$ 3) $\tau = Q/A \le [\tau].$

3)
$$\tau = Q/A \leq [\tau]$$

7. Эпюра нормальных напряжений при изгибе:

- 1) постоянна; 2) линейна; 3) ограничена параболой.
- 8. Дифференциальное уравнение упругой линии балки

$$1) \frac{1}{\rho} = \frac{M}{EI_X}$$

1)
$$\frac{1}{\rho} = \frac{M}{EI_x}$$
; 2) $\frac{1}{\rho} = \pm \frac{v''}{\sqrt{(1+v'^2)^3}}$; 3) $v'' = \frac{M}{EI_x}$.

3)
$$v'' = \frac{M}{EI_X}$$

9. Нормальные напряжения при внецентренном растяжении/сжатии:

1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

10. Закон Гука при сдвиге:

1)
$$\sigma = E\varepsilon$$
; 2) $\tau = Q/A$; 3) $\tau = G\gamma$.

- 11. Эпюра $\it Q$ имеет скачок в сечении, в котором действует:
- 1) внешняя сосредоточенная сила; 2) внешний изгибающий момент;
- 3) распределенная нагрузка.

12. При чистом изгибе в поперечных сечениях действуют:

- 1) только нормальные напряжения σ ; 2) только касательные напряжения τ ;
- 3) нормальные и касательные напряжения (σ и τ).

ТЕСТОВОЕ ЗАДАНИЕ №7

1. Нормальные напряжения при косом изгибе:

1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

2. Жесткость поперечного сечения при растяжении:

1) EA; 2) GA; 3) GI_n .

3. Связь напряжений и внутренних усилий при кручении:

1)
$$\sigma = N/A$$
;

2)
$$\tau = G\rho\varphi$$

1)
$$\sigma = N/A$$
; 2) $\tau = G\rho\varphi$; 3) $\tau = \frac{M_{\kappa}}{I_{\rho}}\rho$.

4. Полное напряжение на площадке с нормалью 11:

1)
$$\sigma = \frac{E}{\rho} y$$
;

2)
$$\sigma = N/A$$

1)
$$\sigma = \frac{E}{\rho} y$$
; 2) $\sigma = N/A$; 3) $p_n = \sqrt{\sigma_n^2 + \tau_n^2}$.

5. В чем измеряются статические моменты фигуры S_{x}, S_{y} ?

- 1) они безразмерные; 2) M^4 ; 3) M^3

6. Распределенная нагрузка и поперечная сила связаны формулой:

1)
$$q_z = -\frac{d^2M}{dz^2}$$
; 2) $Q = \frac{dM}{dz}$; 3) $q_z = -\frac{dQ}{dz}$.

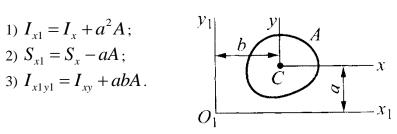
$$2) Q = \frac{dM}{dz}$$

$$3) q_z = -\frac{dQ}{dz}$$

7. Касательные напряжения при плоском поперечном изгибе:

1)
$$\sigma = \frac{E}{\rho} y$$

1)
$$\sigma = \frac{E}{\rho} y$$
; 2) $\tau = \frac{Q \cdot S_x^{\text{OTC}}}{I_x b_y}$; 3) $\tau = \frac{Q}{A}$.


3)
$$\tau = \frac{Q}{A}$$
.

8. Осевой момент инерции при параллельном переносе оси х:

1)
$$I_{r1} = I_r + a^2 A$$
;

2)
$$S_{-1} = S_{-} - aA$$
:

3)
$$I_{x_1y_1} = I_{xy} + abA$$

9. Эпюра касательных напряжений при изгибе:

1) постоянна; 2) линейна; 3) ограничена параболой.

10. Максимальные нормальные напряжения при изгибе:

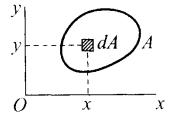
1)
$$\tau_{\text{K,max}} = \frac{M_{\text{K}}^{\text{max}}}{W_D}$$
; 2) $\sigma_{\text{max}} = \frac{N_{\text{max}}}{A_{\text{HeTTO}}}$; 3) $\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_X}$.

2)
$$\sigma_{\text{max}} = \frac{N_{\text{max}}}{A_{\text{Herro}}}$$
;

3)
$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_{x}}$$

1)
$$T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_{y} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; 2) $T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{pmatrix}$; 3) $T_{\sigma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \tau_{yz} \\ 0 & \tau_{zy} & \sigma_{z} \end{pmatrix}$

12. Если N < 0, то участок стержня:


- 1) растянут; 2) сжат;
- 3) недеформирован.

ТЕСТОВОЕ ЗАДАНИЕ №8

1. Момент инерции относительно оси х:

1)
$$I_x = \int_A y^2 dA$$
; 2) $S_x = \int_A y dA$;

$$3) W_x = \frac{I_x}{y_{\text{max}}}.$$

2. При сдвиге возникают:

- 1) касательные напряжения; 2) нормаль-
- 3) нормальные и касательные напряжения.

ные напряжения;

3. Закон Гука при растяжении-сжатии:

1)
$$\sigma = E\varepsilon$$
;

2)
$$\sigma = N/A$$
:

1)
$$\sigma = E\varepsilon$$
; 2) $\sigma = N/A$; 3) $\varepsilon = \sigma/E + \alpha T$.

4. Эпюра М имеет скачок в сечении, в котором действует:

1) внешняя сосредоточенная сила; 2) внешний изгибающий момент; 3) распределенная нагрузка.

5. При косом изгибе нейтральная линия проходит:

1) вне сечения; 2) через центр тяжести сечения; 3) пересекая сечение, но вне центра тяжести.

6. Критическое напряжение по Эйлеру:

1)
$$\sigma = \frac{N_{\text{max}}}{A}$$
; 2) $\sigma = \frac{\pi^2 E}{\lambda^2}$; 3) $\sigma = \frac{M_{\text{max}}}{W_x}$.

$$2) \ \sigma = \frac{\pi^2 E}{r^2}$$

3)
$$\sigma = \frac{M_{\text{max}}}{W}$$

7. В чем измеряются касательные напряжения?

1) они безразмерные; 2) в Ньютонах;

3) в Паскалях.

8. Тензор напряжений для объемного напряженного состояния (трехосная деформация

1)
$$T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_{y} & 0 \\ 0 & 0 & 0 \end{pmatrix};$$
 2) $T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{pmatrix};$ 3) $T_{\sigma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \tau_{yz} \\ 0 & \tau_{zy} & \sigma_{z} \end{pmatrix}$

9. Нормальные напряжения при внецентренном растяжении/сжатии:

1)
$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$$
; 2) $\sigma = \frac{N}{A} + \frac{M_x}{I_x} y$; 3) $\sigma = \frac{M_x}{I_x} y + \frac{M_y}{I_y} x$.

10. Полное напряжение на площадке с нормалью 11:

1)
$$\sigma = \frac{E}{\rho} y$$
;

2)
$$\sigma = N/A$$
;

1)
$$\sigma = \frac{E}{\rho} y$$
; 2) $\sigma = N/A$; 3) $p_n = \sqrt{\sigma_n^2 + \tau_n^2}$.

11. Условие статической эквивалентности при чистом изгибе

1)
$$M_z = \int_A (\tau_{zy} x - \tau_{zx} y) dA$$
; 2) $Q_y = \int_A \tau_{zy} dA$; 3) $M_x = \int_A \sigma_z y dA$.

$$2) Q_{y} = \int_{A} \tau_{zy} dA;$$

3)
$$M_x = \int_A \sigma_z y \ dA$$

12. Гибкость стержня:

1)
$$\lambda = \frac{\mu l}{i_{\min}}$$

$$2) k = \sqrt{\frac{F_{\rm Kp}}{EI}}$$

1)
$$\lambda = \frac{\mu l}{l_{\text{min}}}$$
; 2) $k = \sqrt{\frac{F_{\text{Kp}}}{EI}}$; 3) $\varphi = \varphi' - \frac{\varphi' - \varphi''}{\lambda'' - \lambda'} (\lambda - \lambda')$.

Контрольные работы (заочная форма обучения)

Контрольная работа № 1

3адача 1-Pасчет прямого ступенчатого стержня на осевое действие сил.

Прямоосный ступенчатый стержень нагружен осевыми силами и распределенной нагрузкой. Требуется: а) сделать схематический чертеж стержня по заданным размерам; б) построить эпюру продольной силы; в) подобрать площадь поперечного сечения каждого участка стержня; г) вычислить перемещение заданной точки и удлинение стержня.

Задача 2 – Статически определимая шарнирно-стержневая система.

Статически определимая шарнирно-стержневая система нагружена осевой силой и равномерно распределенной нагрузкой. Требуется: а) выполнить чертеж конструкции по заданным размерам; б) определить величину продольной силы в каждом стержне; в) определить размеры поперечных сечений заданной формы; г) вычислить удлинение каждого стержня.

Задача 3 – Кручение валов кругового сечения.

Для заданной схемы нагружения требуется: а) найти m_0 ; Б) построить эпюру крутящего момента; в) подобрать диаметр сплошного вала по условиям прочности и жесткости; г) подобрать диаметр полого вала по условиям прочности и жесткости; д) вычислить величину экономии материала для полого вала; е) построить эпюру угла закручивания.

Контрольная работа № 2

Задача 1 – Плоский поперечный изгиб стержня.

Статически определимая балка нагружена равномерно распределенной нагрузкой, сосредоточенными силами и моментами. Требуется: а) вычертить в масштабе схему балки и указать числовые значения размеров и нагрузок; б) построить эпюры поперечной силы и изгибающего момента; в) подобрать поперечное сечение балки в виде двутавра; г) проверить прочность балки.

Задача 2 – Устойчивость сжатых стержней.

Для заданной схемы стержня требуется: а) величину критической силы; б) величину допускаемой нагрузки; в) коэффициент запаса устойчивости.

Типовая задача (заочная форма обучения)

Статически определимая балка нагружена равномерно распределенной нагрузкой, сосредоточенными силами и моментами. Требуется: а) вычертить схему балки и указать числовые значения размеров и нагрузок; б) построить эпюры поперечной силы и изгибающего момента; в) подобрать поперечное сечение балки в виде двутавра.

В электронной информационно-образовательной среде ПГУПС (sdo.pgups.ru) размещены примеры решения задач, входящих в контрольные работы.

Материалы для промежуточной аттестации

Перечень вопросов к зачету (все формы обучения)

	Индикатор
Вопросы	достижения
	компетенций
1. Цель и задачи курса "Прикладная механика".	ОПК-4.1
2. Твердое тело: основные гипотезы.	
3. Внешние силы.	
4. Внутренние силы. Метод сечений. Понятие о механических напря-	
жениях.	
5. Внутренние усилия в стержне и простейшие виды деформации.	
6. Основные формы элементов конструкций.	
7. Закон Гука для упругой среды.	
8. Принцип независимости действия сил.	
9. Диаграмма растяжения материала. Характеристики прочности и пла-	
стичности.	
10. Продольная сила и построение ее эпюры.	ОПК-4.1,
11. Нормальное напряжение в стержне при осевом растяжении-сжатии.	ОПК-4.2

12. Принцип Сен-Венана.				
13. Условие прочности. Допускаемое напряжение. Коэффициент запаса.				
14. Типы задач, решаемых с помощью условия прочности.				
15. Упругие деформации при растяжении–сжатии.				
16. Формула для абсолютного удлинения при растяжении—сжатии.				
17. Тензор напряжений. Главные площадки и напряжения. Виды				
напряженного состояния.				
18. Линейное напряженное состояние.				
19. Плоское напряженное состояние.				
20. Теории прочности.				
21. Геометрические характеристики плоских фигур и виды моментов	ОПК-4.1			
инерции.				
22. Зависимость между моментами инерции относительно параллель-				
ных осей.				
23. Чистый сдвиг.	ОПК-4.2			
24. Главные напряжения при сдвиге.				
25. Закон Гука и перемещение при чистом сдвиге.				
26. Внутреннее усилие при кручении и его эпюра.				
27. Касательные напряжения в сечении круглого вала. Условия прочно-				
сти и жесткости.				
28. Виды изгиба и опорных закреплений балки.				
29. Внутренние усилия при плоском изгибе.				
30. Дифференциальные зависимости между M, Q, q.				
31. Нормальные напряжения в сечении балки при чистом изгибе.				
32. Условие прочности при плоском чистом изгибе.				
33. Касательные напряжения при поперечном изгибе.				
34. Эпюра касательных напряжений для прямоугольного сечения.				
35. Перемещения при плоском изгибе балки.				
36. Дифференциальное уравнение изогнутой оси балки и его общий ин-				
теграл.				
37. Перемещения в балке с несколькими участками.				
38. Понятие о сложном сопротивлении.	ОПК-4.1,			
39. Общий случай действия сил на стержень большой жесткости.	ОПК-4.2			
40. Косой изгиб.				
41. Внецентренное растяжение-сжатие стержней.				
42. Расчет сжатых стержней на устойчивость. Формула Эйлера для кри-	ОПК-4.2			
тической силы.				
43. Влияние способа закрепления концов стержня на величину крити-				
ческой силы.				
44. Пределы применимости формулы Эйлера.				
45. Устойчивость за пределом пропорциональности. График критиче-				
ских напряжений.				
3. Описание показателей и критериев оценивания индикаторов достижения				

3. Описание показателей и критериев оценивания индикаторов достижения компетенций, описание шкал оценивания

Показатель оценивания – описание оцениваемых основных параметров процесса или результата деятельности.

Критерий оценивания – признак, на основании которого проводится оценка по показателю.

Шкала оценивания – порядок преобразования оцениваемых параметров процесса или результата деятельности в баллы.

Показатели, критерии и шкала оценивания заданий текущего контроля приведены в таблицах 3.1 и 3.2.

Т а б л и ц а 3.1. Очная форма обучения

№ п/п	Материалы необходимые для оценки знаний, умений и навыков	Показатель оценивания	Критерии оценивания	Шкала оценива- ния	
1	Расчетно-графическая	Правильность	Работа выполнена правильно	19	
1	работа № 1	решения	Работа выполнена с ошибками	0	
2	Расчетно-графическая	Правильность	Работа выполнена правильно	19	
2	работа № 2	решения	Работа выполнена с ошибками	0	
3	Расчетно-графическая	Правильность	Работа выполнена правильно	14	
3	работа № 3	решения	Работа выполнена с ошибками	0	
Итог	Итого количество баллов за расчетно-графические работы (19+19+14) 52				
4	Тестовое	Правильность	Получен правильный ответ	1.5	
4	задание	ответа	Получен неправильный ответ	0	
Итого максимальное количество баллов за тестовое задание (12×1.5)				18	
Всего	Всего максимальное количество баллов 70				

Таблица 3.2. Заочная форма обучения

№ п/п	Материалы необходимые для оцен- ки знаний, умений и навыков	Показатель оценивания	Критерии оценивания	Шкала оценива- ния
1	Контрольная	Правильность	Работа выполнена правильно	25
1	работа № 1	решения	Работа выполнена с ошибками	0
2	Контрольная	Правильность	Работа выполнена правильно	25
	работа № 2	решения	Работа выполнена с ошибками	0
Итого количество баллов за контрольные работы				50
	Типовая задача	Правильность решения	Работа выполнена правильно	20
3			Работа выполнена с мелкими ошибками	10
			Работа выполнена с грубыми ошибками	0
Итого максимальное количество баллов за типовую задачу				20
Всего максимальное количество баллов			70	

4. Методические материалы, определяющие процедуры оценивания индикаторов достижения компетенций

Процедура оценки индикаторов достижения компетенций представлена в табл.4.1 и 4.2.

Формирование рейтинговой оценки по дисциплине

Таблица 4.1. Очная форма обучения

Вид контроля	Материалы, необходимые для оценивания	Максималь- ное количе- ство баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль	Расчетно-графическая работа № 1,2,3; Тестовое задание	70	Количество баллов определяется в соответствии с табл.3.1 Допуск к зачету ≥ 52 балла
2. Проме- жуточная аттестация	Перечень вопросов к зачету	30	 •получены полные ответы на вопросы – 25-30 баллов; •получены достаточно полные ответы на вопросы – 20-24 балла; •получены неполные ответы на вопросы или часть вопросов – 11-20 баллов; •не получены ответы на вопросы или вопросы не раскрыты – 0 баллов.
ОТОТИ		100	
3. Итоговая оценка	«Зачтено» – 60-100 баллов «Не зачтено» –59 баллов и менее		

Таблица 4.2. Заочная форма обучения

Вид контроля	Материалы, необходимые для оценивания	Максималь- ное количе- ство баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль	Контрольная работа № 1,2; Типовая задача	70	Количество баллов определяется в соответствии с табл.3.2 Допуск к зачету ≥ 50 баллов
2. Проме- жуточная аттестация	Перечень вопросов к зачету	30	 •получены полные ответы на вопросы – 25-30 баллов; •получены достаточно полные ответы на вопросы – 20-24 балла; •получены неполные ответы на вопросы или часть вопросов – 11-20 баллов; •не получены ответы на вопросы или вопросы не раскрыты – 0 баллов.
ИТОГО		100	
3. Итоговая	«Зачтено» – 60-100 балл	ЮВ	
оценка	«Не зачтено» – 59 баллов и менее		

Промежуточная аттестация (зачет) осуществляется в форме письменного ответа на вопросы билета. Итоговая оценка ставится в соответствии с таблицей 4.1 (очная форма) или 4.2 (заочная форма).

Разработчик оценочных материалов, профессор

В.И. Смирнов

24 марта 2023 г.